Frequency Interleaving as a Codesign Scheduling Paradigm
JoAnn M. Paul, Simon N. Peffers, and Donald E. Thomas

Center for Electronic Design Automation
Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1 412 268-3545
{ipaul, peffers, thomas}@ece.cmu.edu

ABSTRACT

Frequency interleaving is introduced as a means of conceptualizing
and co-scheduling hardware and software behaviors so that
software models with conceptually unbounded state and execution
time are resolved with hardware resources. The novel mechanisms
that result in frequency interleaving are a shared memory
foundation for all system modeling (from gates to software-
intensive subsystems) and de-coupled, but interrelated time- and
state-interleaved scheduling domains. The result for system
modeling is greater accommodation of software as a configuration
paradigm that loads system resources, a greater accommodation of
shared memory modeling, and a greater representation of software
schedulers as a system architectural abstraction. The results for
system co-simulation are a lessening of the dependence on discrete
event simulation as a means of merging physical and non-physical
models of computation, and a lessening of the need to partition a
system as computation and communication too early in the design.
We include an example demonstrating its implementation.

Keywords

Hardware/Software Codesign, Computer System Modeling, Clock
Domains, Frequency Interleaved Scheduling

1. INTRODUCTION

One. of the greatest challenges in capturing and co-simulating
mixed hardware/software systems is the means of merging timed
(resource, physical) and untimed (software, configuration) models
of computation. Hardware models require time to resolve the
structural interconnect of physical resources and to resolve time-
based behaviors with external systems. Arbitrary structural
interconnect of hardware behaviors has been conventionally
resolved by time-tagged data events which activate an arbitrary
number of user-specified resources simultaneously (at the same
time tag). Software modeling ideally serves as a configuration
paradigm in which behavior is not tightly coupled with physical
architecture — rather, it configures a general architecture to execute
the given behavior. Arbitrary resource management of behaviors
specified in the software domain has been conventionally resolved
by interleaving behavioral execution based on a higher-order
“design to” paradigm, such as a fetch-decode processor (Turing
Machine model), a program (function calls or access methods), or
an interleaved scheduler (distributed software program [14]). When
hardware and software are used to specify system-level behaviors,
these two design scenarios are in opposition. Comprehensive
computation system design requires that they be merged such that
models of hardware and software behavioral design are not
restricted.

The foundation of most physical (resource-based) models of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CODES 2000 San Diego CAUSA

Copyright ACM 2000 1-58113-268-9/00/5...$5.00

131

computation are time-tagged data events [6]. Events are a model of
activation and propagation of change of state, where state can be
considered to be registered, wired, or in conventional memory.
Previous mixed system approaches unite the hardware and software
domains by introducing explicitly timed computation into the
software domain for uniting models of computation in a discrete
event simulator [9], by synthesizing timed and bounded (finite)
software from a system specification language that does not utilize
unrestricted, unbounded software models as a system level
behavioral specification domain [1][7][10], or by utilizing untimed
transaction handshaking for both hardware (architecture or
deployment) and software models [2]. Untimed models do not
capture physical (hardware) models of computation. Explicitly
tined software computation requires the user to introduce time
delays, processor models to reduce software to physical models
[4][12]), or other measurement techniques (e.g., instruction set
simulators) to determine software computation time. Simulation
environments such at Ptolemy focus on uniting heterogeneous
models of computation (MoCs). The basis for uniting MoCs in
Ptolemy is that all semantics lead to the same “bubble-and-arc” or
“block-and-arrow” diagrams [5] with the constraint that all
processes in the MoCs must have discrete firings [3]. These models
of encapsulated computation and communication are natural for
modeling embedded systems, but not natural for modeling software
concurrency where resources (especially state) are shared and
conceptually unbounded.

As sofiware becomes an increasingly important behavioral
specification domain for all digital computation, it must be fully
included (not restricted) in any computation system model.
Software paradigms are naturally hierarchical. Sofiware can serve
to specify system behaviors, or as “design to” paradigms. Dynamic
memory allocation and distributed software schedulers are two
examples of resource unbounded (software) MoCs which can blur
the lines of distinction between software schedulers and physical
architectures [15]. The challenge is to merge conceptually
unbounded models of time and space with physical (timed) models
of architecture and resources for trade-off analysis, co-simulation,
and paths to physical synthesis.

The major difficulties posed by the strong coupling of software
behavior to time-tagged data events or by reducing software to
“bubble-and-arc” diagrams are in:

* modeling behaviors with conceptually unbounded state, com-
munication, and execution times. System modeling must
include a tolerance for time budgets for software functionality
rather than just strictly timed (or untimed) execution. Software
models must not be restricted to finite state machine-like mod-
els.

* modeling sofiware schedulers as architectural features or trade-
offs. Placing software schedulers and physically interconnected
architectures on the same level of design enables design trade-
offs between them — at various levels of design detail.

» allowing software to serve as a flexible, data-dependent behav-
ioral configuration paradigm. The software paradigm includes
written collections of behaviors that just execute “fast enough.”
Many background tasks can be considered to be completely
time independent; some may be place-holders.

We present frequency interleaving as both a conceptual and

scheduling device. It provides a basis for merging and resolving

unrestricted hardware and software models of computation
accommodating the above modeling scenarios as well as the more
conventional codesign scenarios (such as those that place bounds
on software behaviors and time its physical execution). Frequency
interleaving unites untimed, unbounded software models with
finite, timed hardware models by using a shared memory
foundation. All threads are resolved back to conceptual clock
domains. Since the foundation is shared state, there is no need to
partition a system as encapsulated computation and
communication too early in the design.

2. FREQUENCY INTERLEAVING

The foundation for frequency interleaving is that all digital
computation — from gates to software systems — can be viewed
as an idealized shared memory paradigm, and that relative
execution times of the threads modeling these systems can be
based on a relative frequency of execution for each of the threads.

2.1 Thread Types

We begin by first defining the types of threads we use to represent
systems. Our basis for behavioral modeling includes software
functions, hardware threads, software threads, and software
processes (threads with private namespace). These are all
schedulable execution entities that advance system state — and are
all potentially concurrent entities. We consider a thread the basic
unit of modeling state advancement in any system. While our
modeling techniques are aimed at high-level co-simulation and
design exploration for system synthesis, we do not require libraries
of components (unlike [8]), but instead focus on the semantics of
co-computation. Our approach is developed from an identification
of existing thread types from the hardware and software domains.

We have defined the Codesign Virtual Machine (CVM) [11],
illustrated in Figure 1. Resource threads (R), such as always blocks
in Verilog or process statements in VHDL, are threads that respond
to a value change (combinational logic for asynchronous
modeling), clock edges (global synchronization) or hardware waits
(self-timed hardware synchronization of interacting finite state
machines [13]). The common feature of these thread types is the
one-to-one mapping of behavior to an execution resource. All of
these threads may be considered to be continuously “sampling”
inputs and translating (via functional computation) to outputs with
some delay. All resource threads are derived from a thread type we
call “type C” (for continuous translation).

R |+

Mem
Bus

Figure 1 Codesign Virtual Machine

The interleaved (I) domain of Figure 1 models computation
traditionally associated with the sofiware domain. All 1 threads are
derived from type G(F), where the G stands for “guarded
execution.” Guarded thread types are activated by the execution of
some function, F. The function may be considered to schedule the
threads it guards. Examples of these thread types include ones
guarded by programmatic sequencing, resource multiplexed
threads, dynamically scheduled threads (as a result of data-
dependent programmatic sequencing), critical sections guarded by
mutexes, and periodic threads mapped to a real-time operating
system (where time is the guard). The common feature of these
threads is that their activation is not continuous, but a function of a
higher order scheduling algorithm (e.g., an operating system,
program, processor, or thread scheduler). Each of the G(F) threads
may be considered to be many-to-one mapped to system resources.

132

System resources for type G(F) threads are not specified
behaviorally, but are provided as architectural/scheduler features
with computation power which are “loaded” by mapping behaviors
to them. These will be described later.

G(F) threads may be activated by schedulers ranging from custom
user-defined software to simple processor resource models. In the
CVM, all G(F) threads may be considered to execute in a single 1
domain because of the presumption of an ideal scheduler that can
resolve all G(F) threads to a single time base. (Hierarchical
relationships between CVMs, introduced in [11], are not discussed
in this paper.)

G(F) threads may represent behaviors ranging from a synchronous
reactive “hard-time” paradigm to a task that executes correct
behavior within a soft range of execution time, to a task that
executes correct behavior regardless of execution time, to a task
that executes only when a resource is otherwise idle and so may be
considered to execute in zero time — all may be scheduled by a
single, idealized scheduler. We are not designing real-time
schedulers, nor making assumptions about software execution. We
are accommodating the widest range of software modeling
paradigms possible, including the view that software schedulers
can be appropriate to think of as system architectural features.

The virtual machine of Figure 1 is literally the abstract system in
the sky. It allows arbitrary connectivity to be modeled through a
single idealized bus with unbounded bus width and addressability.
1t allows physical structure to be modeled on this bus by an infinite
number of computation resources that continuously translate
inputs to outputs. Finally, it allows shared memory access among
all computation resources from this bus. Behaviors written to this
model may be quite detailed in functionality, or may be mere
place-holders. But, all behavioral threads can be simulated
regardless of the underlying implementation; we just assume that
there are enough computing and hardware resources to execute the
behaviors. The observation that physical models of computation
can be achieved with a foundation of a shared memory model of
computation forms the basis for uniting hardware and sofiware as
truly unrestricted modeling domains.

2.2 Conceptual Clock Domains

Discrete event simulation is the foundation of most hardware
models of computation because it models the sparse execution
typical of many physical models. As execution models of physical
systems become more complex, as with cycle-accurate modeling,
time steps are utilized to activate the entire system — all system
resources execute every cycle. This can be viewed as executing at
a different frequency; one that’s high enough to capture the
behavior of the system (the clock cycle frequency) but lower than
if we were modeling individual gates. In these models of
execution, all behaviors are assumed to complete within a time
step — and the entire system is designed to this single time step.
We can think of this as a time budget within which the behaviors
must fit. Interestingly, both synchronous digital hardware design
and the modeling of analog systems utilize this paradigm.

In a cycle accurate paradigm, the time budget allows the bounds on
exact propagation time of individual gates to be relaxed. Only the
upper bound on a grouped execution of gates need be known while
the tolerance of individual gates may vary. In addition, the clock
provides an independent event that acts as a global guard function.
In essence, the clock schedules atomic actions between events.

Software behavior is commonly designed without exact execution
time of each line of behavior in mind, but rather with a time budget
for a grouping of lines or a whole program. The time budget may
be strict, as in hard real-time systems, or it may be very loose, as in
systems with behaviors that execute “fast enough.”

While a time budget for a synchronous hardware design paradigm
is tightly coupled to the single clock, there may be a variety of time
budgets for software executing in a system. These time budgets are
coupled to schedulers which are ultimately resolved to physical

time, however loosely or tightly coupled. Software behaviors may
be sequenced by instruction fetch, function call, mutex unlock, or
server availability for example. These are software schedulers that
result from higher-order abstractions. Software behaviors designed
to software time budgets may be likened to hardware behaviors
executing at a clock frequency — fast enough is good enough.

We consider a type C thread, which executes at a given frequency,
to be a clock domain because it has an independent time basis.
Indeed, in real systems this could correspond to a physical clock
domain of a synchronous system. But it can also correspond to
software schedulers since they resolve software behaviors to a
physical time basis. Frequency interleaving provides for an
idealized, protocol-independent, event-independent foundation by
which clock domains can be resolved, and physical architectures
and software schedulers that support software execution can be
codesigned. Frequency interleaving allows the level of computer
system design to be raised by modeling clock domains and
software schedulers as equivalent architectural abstractions.

3. MIXED SYSTEM MODELING

The power of frequency interleaving is in the generalized software
schedulers that resolve physical boundedness with conceptual
unboundedness of time and space. Unbounded models permit
software to have enhanced representation as an untimed
configuration mechanism and as a model of shared memory
arbitration and allocation that is not limited to deterministic, finite
state machines. Frequency interleaving is a scheduling abstraction
which is itself useful for both system conceptualization, and for
providing paths to physical systems with schedulers. It will
support system synthesis.

Frequency interleaving resolves hardware and software behavioral
design to a unified state and time base, conceptualized by the CVM
as an idealized shared memory architecture with state update
properties. Differences in hardware and software modeling are in
activation, time budget consumption, and atomicity of state update
of hardware and software threads. Time budget consumption and
state update atomicity are concepts that are unique to our
frequency interleaved modeling foundation.

3.1 Thread Relationships

Consider the “completely connected substrate” of all state in a
system with three type C threads as illustrated in Figure 2. All
. system state (wired, registered, conventional memory) is
considered equally accessible in the same shared memory space —
thus the three threads are shown as residing on a “grid” of memory
to which they have ideal, equal access. (We can think of this as a
flattened view of three C threads that might be in the R domain of
in Figure 1.) Inter-thread state resolution 1s, ideally, shared with no
penalty associated with information exchange between threads.
Activation of the threads is based only on their relative
frequencies. The relative frequencies are derived as an inverse
function of relative computation complexity (computation inertia).

Each type C thread executes at a frequency relative to that of the
other threads in the system and inversely proportional to the
propagation time of the logic device it models. Further, each thread
runs atomically, thus its update is the output set size of the thread.
Partial updates of multiple output threads will never be seen by
other threads because of this guaranteed atomicity. The only
synchronization of state update between C threads is based upon
&: relative execution frequency of the behaviors specified by each
ead.

A processor or software scheduler is a system level resource to
which type G(F) threads can be mapped. That is, we can think of a
G(F) software thread either as having a processor to run on, or as
being scheduled along with other threads to run by some form of
OS; the choice is up to the system designer and the level of detail
being used. System level resource threads for these G(F) threads
are modeled as type C threads with a specified frequency of
execution. If the resource thread is a processor, the frequency

133

(]

L) 4

L \

[§
\

Figure 2 Frequency interleaved threads, sharing idealized
state access

could be that of the instruction or bus cycle, depending on the level
being modeled. If it is a software scheduler, it could be the
frequency of thread scheduling. This scheduler resource thread can
then execute the G(F) threads mapped to it as a function of
scheduler behavior and interleaved execution frequency. The point
is that the specification of time-independent software behaviors is
de-coupled from the time basis that ultimately unites all behaviors.

We can combine C and G(F) threads as illustrated in Figure 3,
which shows a system with three frequency interleaved clock
domains (C threads) and four G(F) (software) threads. The
execution model of all of the computation resources is the result of
the interleaving of the frequencies of the resource threads in the
system. Resource threads C1, C2 and C3 are the only threads in the
system with a time budget, represented with a relative frequency of
execution f. Threads C2 and C3 are resource threads that are
completely specified behaviorally. Thread C1 is a resource thread
that exports (includes and provides) a software scheduler. The
scheduler directly executes configuration threads G1, G2 and G3.
Configuration threads (type G(F)) are threads that can be mapped
to threads that export schedulers. Thread G1 may also export a
scheduler; it schedules and executes thread G4. Execution of
software threads G1 — G4 can only take place during the time
budget provided by frequency interleaved thread C1.

G4(F)

.

R: resource
interleaving

I: state-based
interleaving

fy
¢

Figure 3 Frequency Interleaved Scheduling

Figure 3 depicts the two interrelated but de-coupled scheduling
domains: the resource (R) domain in which computation is
activated solely on the basis of time, and the I domain in which
untimed software type G(F) behaviors are activated solely on the
basis of state and resolved with an underlying resource time budget .
by OS-like simulation threads. Frequency mterleaved scheduling
in the R domain is represented as the solid line at the bottom of the
figure; this allows the three type C threads to co-execute in.a
shared memory substrate such as shown in Figure 2. Scheduling in
the I domain is represented as the dashed lines of the I domain.

The common feature of the state interleaved schedulers implied by
the dashed lines of Figure 3 is that they sequence unbounded type
G(F) behaviors and allow them to be resolved with the physical

“models in the system. The important modeling aspect of this

resolution is that we have made the modeling of clock domains (as
found in hardware) equivalent to the modeling of the software
scheduling domain (as found in software). These are the
foundation of computer system modeling.

3.2 Schedulable Differences

In frequency interleaving, a resource C type thread has three
characteristics that make it unique to a bounded, resource-based
hardware model of computation: continuous activation, complete
consumption of its time budget (a perfect match between behavior
and available resources), and a one-to-one output set and state
update atomicity size match. In contrast, softiware G(F) thread
characteristics are: state scheduled activation, scheduler/context-
dependent time-budget consumption (a variable match between
behavior and available resources), and scheduler/context-
dependent state update atomicity. The property of scheduled
activation is traditionally associated with control flow modeling
and is a part of our CVM modeling.

Context-dependent time budget consumption permits greater time-
flexibility for certain softiware behaviors, thus allowing software to
have a wider variety of actual execution time tolerances. Unlike
hardware models of computation, rarely is software programmed
to precisely match the available processing power. G(F) threads
may not completely consume the time budget of the resource to
which they are mapped — indeed, some G(F) threads may
theoretically consume zero-time, since they are programmed to be
background tasks. In addition, the execution of a G(F) type thread
may produce a partial set of outputs each time it executes. Indeed it
may not execute to “completion” during a given time period
because its complexity exceeds that of the computation resource
power to which it is mapped.

In frequency interleaving, software schedulers resolve time
budgets to available resources with a wide variety of system
modeling scenarios ranging from timed instructions to zero-time
behaviors. The point is that the de-coupling between behavior and
physical resource by a scheduler abstraction allows different
software behaviors to be treated differently with respect to time.
The scheduler may in turn represent a programmatic feature of a
resultant system or a model used for the purposes of system
simulation. Indeed the scheduler abstraction allows some sets of
software behaviors to be treated differently within a single
scheduler — which is typical of a priority-resolved RTOS or a
custom simulator.

Scheduler-dependent update atomicity is necessary to capture the
theoretically unbounded input and output set sizes of software.
Unlike hardware behaviors, software behaviors contribute state
update to shared memory architectures with variable atomicity. At
a bus-level model of behavior, the bus width is the appropriate
level of granularity for interleaving atomic update with other
system resources. And yet, software behaviors written to higher
order software schedulers provide interleaving with a wide variety
of enforcements for critical sections, e.g., mutexes. The critical
sections are a software means of enforcing atomicity. Context
dependent state update atomicity permits input and output sets of
software to be conceptually unbounded in size. The result is an
ability to allow sofiware to more naturally model the dynamic,
unbounded model of a Turing Machine,

In summary, software behaviors can be resolved to context-

—- - —-dependent—activation; - execution—frequency and atomicity by

frequency interleaved schedulers. These permit greater
approximation of unbounded time and state modeling. The
unbounded time and state modeling are necessary to capture
software as a resource configuration modeling paradigm as well as
an unbounded resource modeling paradigm. By conceptually
separating the activation mechanism, time consumption, and
update atomicity of G(F) threads we have more accurately
modeled software threads. By resolving G(F) threads to type C
threads with a richer set of assumptions about software scheduling
mechanisms, we allow software execution to be resolved with

134

physical architectural models in a richer way. Further development
of schedulers that resolve G(F) threads with frequency interleaved
clock domains will be the subject of future research.

4. EXAMPLE

This section discusses a co-simulation implementation of
frequency interleaving that resolves C and G(F) threads. Ours is
but one implementation of the scheduling concepts. What is novel
is the way in which threads are interrelated and interleaved on the
basis of time and state sequencing. These support the frequencies
and software schedulers that appear in the system. We chose to
build our cosimulator from a completely custom scheduler as
opposed to building it from a pre-existing simulation package.

Figure 4 shows how we co-simulate frequency interleaved systems
such as depicted in the C and G(F) threads of Figure 3. In step 1,
the base time of all threads in the system is initially calculated
from the relative frequency requirements of all threads in our
cosimulation scheduler. For the threads in Figure 3, this represents
the relationships between frequencies fj, f;, and f3. For example, if
the frequencies are 2.0, 1.0, and 0.5, respectively, we define the
frequency of a thread to be the execution rate of the frequency
interleaved thread over the execution rate of a base thread. This
means that every time the base thread runs, C1 runs twice, C2
once, and C3 half, relative to the execution of the base thread. The
base thread executes in step 2 and is interleaved with each
frequency interleaved thread — it schedules the frequency
interleaved Ci threads, which execute in step 3. The Ci threads are
statically scheduled, unlike discrete event lists.

_ L. Calculate
time steps of all
threads

Start —p

4. Schedule all
G(F) mapped
- to C1

Ve
p s
s 5.
s Bl Execute
3. Execute Ci ;

for Time [GiF)

Budgett; |e¢ |

i Figure 4 Simulation

— et-my | Scheduler

Each Ci thread may be a behavioral hardware resource thread
(threads C2 and C3 in Figure 3) or a software resource thread that
exports a scheduler upon which G(F) threads can execute (thread
C1 in Figure 3). There is no limit to the number of Ci threads in the
system, nor the number of Ci threads that export software
schedulers, nor the number of G(F) threads mapped to each Ci
thread that exports a scheduler. The G(F) threads are executed by
the specific scheduler mapped to a Ci thread. The scheduler, if it
exists, is executed in step 4. The Gj(F) threads of step 5, which
map to the scheduler exported in step 4, then run a scheduling
algorithm specifically defined by that scheduler until complete -—
where “complete” is defined by the scheduling mechanism of step
4. When the time budget of thread Ci has been exhausted, the time
step of the system is advanced by the time budget allocated to the
Ci thread in step 6 and control is returned to the base thread to
schedule the next Ci thread. For the example frequencies, this
gives us an execution history of C1, C2, Cl, C1, C2, C3, Cl.

Our current co-simulator is able to support exported POSIX thread
(Pthread) schedulers, and can even export a discrete event
scheduler from a Ci thread. Interestingly, discrete event schedulers
can also be interleaved with other discrete event schedulers in the
frequency interleaved paradigm. The discrete event scheduler is
utilized in our example (below) to model the internal execution of
portions of a system. Any hardware thread (including a single gate)
can be modeled as a C thread, but for sparse execution, a discrete
event scheduler may be more efficient.

To demonstrate our methodology and scheduler, we implemented a
chess playing system using our cosimulator. Chess may be
considered one of the earliest codesign problems in that custom
hardware was utilized to speed up parts of the early machine chess
algorithms. We used a public domain chess algorithm [17] as the
chess playing engine and xboard [16], an X Windows package for
displaying chess games, for the display. The implementation of
this system took place in three phases, as shown in Figure 5.

a

@ chess | xboard
(b) S2 , $3
chess , | xboard I
!
/’——__7[-\'" /I

() 4 S5 ’
l\ chess sw| [chess hw P

Figure S Chess System

Each ‘S’ is a scheduler. In (a), the chess algorithm was modified to
support xboard and part of the chess algorithm was rewritten as
hardware. The system was implemented in a single scheduler, with
the software part of chess as one thread, xboard as another thread,
and the hardware part of chess as several Verilog threads. (We
currently use C or Verilog to specify C type threads.) In (b), the
system consists of S2 and S3. Xboard was split from the chess
engine and simulated in a separate scheduler. S3 was exported
from a thread frequency interleaved with respect to the chess
thread. The method of communication between chess and xboard,
a FIFO buffer, did not change between (a) and (b), and no
additional handshaking was required.

In both (a) and (b), the communication between the software and
hardware portions of the chess engine took place by modeling
events in a shared namespace. To send data to hardware, software
would place an event on a wire. In (c), the system is composed of
schedulers S3, S4, and S5. We separated the hardware and
software parts of chess into two different schedulers. S5 is the
hardware portion of chess and represents several C threads. S3 is
unchanged and is reused to represent the display part of the
system. With S2 split, S4 and S5 have different notions of time. We
utilized a frequency interleaving paradigm to allow S4 and S5 to
communicate by the sender writing into the shared memory space
and assuming that the receiver would execute fast enough to
receive it. Systems a, b, and ¢ in Figure 5 produce correct behavior.
As we move from the top of the tree to the bottom, we get closer to
a physical implementation which may include physical resources
and software schedulers.

5. CONCLUSION

We have introduced frequency interleaving as both a conceptual
and scheduling device that provides a basis for merging and
resolving unrestricted hardware and software models of
computation. Conventionally, software modeling has been lowered
to hardware modeling abstractions such as discrete event physical
modeling or computation-communication partitionings. However,
these have been ineffective in capturing the unbounded nature of
software modeling as it interacts with physical architecture. This
nature is essential in capturing the increasing use of software as a
system-level behavioral specification domain that permits arbitrary
configuration, shared memory modeling, and software schedulers
as “design to” paradigms.

¢ By raising the physical modeling abstractions associated with
hardware modeling to a software abstraction, we have raised
the common basis for codesign modeling to be far more inclu-
sive of unrestricted sofiware modeling paradigms.

* By de-coupling a physical scheduling paradigm from an inter-
leaved scheduling paradigm we allowed for representation of
software schedulers as architectural features and trade-offs.

135

« By allowing software threads to be executed within a time bud-
get, we have allowed software to take on a greater representa-
tion as an untimed configuration paradigm of physical systems.

+ By resolving multiple software scheduling domains with a
physical scheduling domain, we have allowed software to fully
represent the unbounded, dynamic resource modeling charac-
teristic of unbounded state machine models of computation in
system level cospecification.

We have developed an initial version of our frequency interleaved
scheduler and included an example which verifies its correctness.
Future work will include assessing relative execution efficiencies
with conventional co-simulators and further development of the
frequency interleaved and CVM models for multiple level
modeling and paths to system synthesis. Synthesis will include
consideration of the “ideal” shared memory bus model as
becoming less ideal (more restricted) at lower levels of a system
hierarchy which will include topological (point-to-point)
interfaces, blocking communications and memory partitions. Such
system details will either be derived from the behavioral hierarchy,
specified by the system designer, or both.

6. ACKNOWLEDGEMENTS
This work was supported in part by NSF Award EIA-9812939.

7. REFERENCES

{1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L.
Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, E. Sen-
tovich, K. Suzuki, B. Tabbara. Hardware-Software Co-Design
of Embedded Systems, Kluwer, ‘97.

[2] G. Booch, J. Rumbaugh, 1. Jacobson. The Unified Modeling
Language User Guide. Reading, MA: Addison-Wesley. 1999.

[3] W.-T. Chang, S.-H. Ha, and E. A. Lee, "*Heterogeneous Simu-
lation -- Mixing Discrete-Event Models with Dataflow," Jour-
nal on VLSI Signal Processing. Vol. 13, No. 1, Jan 1997.

[4] J.-M. Daveau, G. Marchioro, A. A. Jerraya. Hardware/Soft-
ware Co-design of an ATM Network Interface Card: a Case
Study. Proceedings of the International Workshop on Hard-
ware/Software Codesign. Mar 15-18, 1998.

{51 J. Davis II, M. Goel, C. Hylands, B. Kienhuis, E. Lee, ¢t. al,
"Overview of the Ptolemy Project," ERL Technical Report
UCB/ERL No. M99/37, Dept. EECS, Berkeley. July 1999.

[6] S.Edwards, L. Lavagno, E. Lee, A. Sangiovanni-Vincentelli,
“Design of Embedded Systems: Formal Models, Validation,
and Synthesis,” Proc. of the IEEE 85:3 (3/97) 366-390.

[7]1 O.Fargemand, A. Olsen. Introduction to SDL-92. Computer
Networks and ISDN Systems 26 1994, p. 1143-1167.

[8] D. Gajski, F. Vahid, S. Narayan, J. Gong. SpecSyn: An Envi-
ronment Supporting the Specify-Explore-Refine Paradigm for
Hardware/Software System Design. /[EEE Transactions on
VLSI Systems, Vol. 6, No. 1. March, 1998.

[9] K. Hines and G. Boriello. Dynamic Communication Models
in Embedded System Co-Simulation. Proc. of 34th DAC, ‘97.

[10] L. Lavagno, E. Sentovich. ECL: A Specification Environment
for System-Level Design. Proceedings of 36th DAC, 1999.

[11] J. M. Paul, S.N. Peffers, D. E. Thomas. "A Codesign Virtual
Machine for Hierarchical, Balanced Hardware/Software Sys-
tem Modeling," 37th Design Automation Conference, 2000.

[12] V. Rompaey, D. Verkest, . Bolsens, H. De Man. CoWare - A
design environment for heterogeneous hardware/software
systems. Proceedings of EURO-DAC, 1996.

[13] C.L. Seitz. “System Timing.” /ntroduction to VLSI Systems.
C. Mead, L. Conway. Reading, MA: Addison-Wesley, 1980.

[14] D. Skillcorn, D. Talia. “Models and Languages for Parallel
Computation,” ACM Computing Surveys. Vol. 30, No. 2,1998.

[15] D. Thomas, J.Paul, S. Peffers, S.Weber. "Peer-Based Multi-
threaded Executable Co-Specification" Proc. 7th Interna-
tional Workshop on Hardware/Software Codesign, 1999.

[16] www.research.digital.com/SRC/personal/mann/chess.html

[17] http://ucsu.Colorado. EDU/~kerrigat/

